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Dipartimento di Fisica UnivenitA La Sapienza, INFN Sezione di Roma I, Piauale Aldo 
Moro, Rome 00187. Iialy 

Received 28 June 1994. in final form 20 September 1994 

Abstract. We study the statistical mechanics of a D-dimensional m y  of Josephson junctions in 
the presence of a magnetic field. In the high-temperature region. the thermodynamical properties 
can be computed in the limit D -+ m, where the problem is simplilied; this limit is Wken in the 
framework of the mean-field approximation. Close to the transition poinf the system behaves 
very similmly to a particular form of spin glasses, i.e. to gauge glasses. We have noticed ittat in 
this limit, the evaluation of the coefficients of the high-temperafure expansion may be mapped 
onto the computation of some matrir elemenis for the q-deformed harmonic oscillator. 

1. Introduction 

In this paper we are interested in studying the statistical mechanics of arrays of Josephson 
junctions in D-dimensions in the limit where D --f W. We will construct here the solution 
of the mean-field theory in the high-temperature phase. We postpone to a later stage 
the computation of the corrections to the mean-field approximation and the study of the 
low-temperature phase. The model has been studied in two dimensions, especially in the 
low-temperature region [l, 21, but no results are known for very high dimensions. 

The model we consider is described by the Hamiltonian 

ff = -C(D) x&uj,k& 4- HC. (1) 

Here c(D) is a normalization constant, which will be useful later to rescale the Hamiltonian 
in order to obtain a non-trivial limit when D goes to infinity. The spins @j are defined on 
a D-dimensional hypercubic lattice. 

j,k 

We can consider three possibilities: 
(i) the spins q4j are constrained to be of modulus one; 
(ii) the spins $, have modulus one in the average at B = 0 (in this limit they have a 

Gaussian distribution); and 
(iii) the spins satisfy the constraint xi I+$IZ = N .  This is the spherical model which is 

intermediate between the two previous models. 
In the limit where the dimension D goes to infinity, the properties of the first and third 

model can be obtained from that of the Gaussian model. We will concentrate our attention 
on the Gaussian case. 

The couplings U are non-zero only for nearest-neighbour sites. They are complex 
numbers of modulus one and they satisfy the relation 

- 
u k , j  = uj.k. ( 2 )  
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In other words, the couplings U are the links variables of a U(1) lattice gauge field. 
We will select the couplings U to give a constant magnetic field. Many different 

orientations of the magnetic field can be chosen. For simplicity, we restrict our computation 
to the case where the flux through each elementary plaquette is given by B (or -B), 
independently of the plane to which the plaquette belongs. This corresponds to constant 
uniform frustration on all the plaquettes. In the extreme case (B = x ) ,  we obtain a 
fully-frustrated model, while for B = 0 we recover the ferromagnetic case. Random-point- 
dependent B values correspond to a particular form of spin glasses, i.e. to gauge glasses 
W1. 

More precisely, we set 

Bm,p = Sm,gB (3) 

where Se,@ may take the values 1 or - 1 and Be.@ is the antisymmetric tensor corresponding 
to the magnetic field, which in the continuum limit is given by &A, - apA,. The ordered 
product of the four links of a plaquette in the a, p plane is equal to exp(iBe,p). 

We must now specify S,,p, i.e. the sign of Be,#. A possible choice would be to take 

which implies Be,@ = B for CY > p .  
In two and three dimensions, this choice is equivalent to any other possible choice of the 

sign. In three dimensions, the magnetic field is a vector and all the vectors corresponding 
to different choices of the sign may be obtained from one another by rotation. The choice 
of S does not influence the thermodynamics. 

In more than three dimensions, different choices of the matrix S are not equivalentt 
and we must select one among all the possible choices. In this paper, we consider the case 
in which the matrix S is generic, i.e. the signs of B are randomly chosen. The system is 
translationally invariant and the randomness appears in only the relative orientation of the 
magnetic field with the crystal axis. 

In the two-dimensional case, we recover the usual description for an XY system (or 
equivalently an array of Josephson junctions) in a constant magnetic field. 

The aim of this paper is to compute the statistical properties of this model in the mean- 
field approximation in the high-temperature region. The first difficulty we face consists 
of finding the spectral properties of the lattice-discretized Laplacian in the presence of a 
magnetic field. The lattice Laplacian is defined as 

The spectral properties of the lattice Laplacian in two dimensions have been carefully 
studied. They depend on the arithmetic properties of the B I Z ,  i.e. different results are 
obtained for rational and irrational B/rr 121. 

The study of the lattice Laplacian in higher dimensions is much less developed. In 
any dimension, the explicit construction of the field U shows that for rational Blx,  of the 
form B = Zxr/s with both r ,and s integers, there is a gauge in which the U couplings are 
periodic functions of the position, with periods. In this case, the spectrum of the Laplacian 
has the typical band form, the edges of the bands being related to the eigenvalues of an 

t I am grateful to E Marinari and F Ritolf for C N C i d  discussions on this problem. 
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sD x sD matrix. When both s and D are large, a direct study of the eigenvalues is rather 
complex. 

We will study this problem in the limit of an infinite number of dimensions. We cannot 
solve it in a completely satisfactory way, but we can put forward some educated guesses. 
We will find some unexpected relations with the properties of the q-deformed harmonic 
oscillator. Finally, the behaviour of the model ends up being very similar to that of spin 
glasses. The reader should notice that it is not clear how much of our results survive in 
large, but finite, dimensions and that the properties of the model in high dimensions may 
be quite different from that of the two-dimensional model. 

In section 2, we present some general considerations. In the next section, we show some 
general properties of the high-temperature expansion in the limit D + W. We consider 
in detail the ferromagnetic case, the spin-glass case and the constant-frustration model. In 
section 4, we show the relation between the high-temperature expansion for the constant- 
frustration model in infinite dimension and the q-deformed harmonic oscillator. In the next 
section, we study the behaviour of our model near the critical point and we find that it is 
very similar to that of spin glasses. In section 6, we briefly discuss the problems related to 
the exchange of limits (0 + pc and D + MI). Finally (in the last section), we present our 
conclusions and express our points of view on the open problems. In the appendix we will 
describe some interesting features of the q-deformed harmonic oscillator, which shows an 
anomalous behaviour for q = exp(Zni0) when 0 is rational. 

2. General considerations 

There are two extreme cases for the U which are very well studied for the Hamiltonian (1). 
(i) We set 

Uj,k = 1. (6) 

In this way, we obtain the usual ferromagnetic XI' model. There is a ferromagnetic transition 
at = 1 in the limit D --f MI if we set c ( D )  = &j, i.e. c(D)  has to be equal to the inverse 
of the coordination number of the hypercubic lattice. 

(ii) We set 

uj,k = exp(irj,a) (7) 

where r are random numbers belonging to the interval 0-2rr such that symmetry condition 
(2) is satisfied. 

In this way, we obtain a spin-glass model of XY type, which is called a gauge glass 
13-51, The transition temperature is p = 1 in the limit D + w if we set c ( D )  = (2D)-'/*, 
i.e. c ( D )  is equal to the inverse of the square root of the coordination number. 

The model we study is intermediate among the previous two problems. In order to 
define it properly, it is convenient to introduce the so-called Wilson loop. Let us consider 
a closed oriented circuit (C) on the lattice, which goes from the point j to the same point 
j and let us define W ( C )  as the product of the U's along the circuit. The Wilson loop 
W ( C )  is a gauge invariant. The knowledge of W(C) for any C gives all gauge-invariant 
information concerning the gauge field. 

In the continuum limit, we have 

W(C) = exp (i l d x '  A p ( x ) )  = exp(i@(C)) 
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where @(C) is the magnetic flux entangled within C. 

given by 
In two dimensions, in  the presence of a constant magnetic field, the Wilson loop is 

W ( C )  = exp(iBS(C)) (9) 

where S(C) is the signed area of the loop C. 

The choice of the magnetic field we study here is 
In D dimensions, there are D(D - l)/2 planes oriented in the direction of the lattice. 

~ ( c t  = exp(i@(C)) = s,,,(c)B,, (10) 
v.p=v<, 

where the indices U and /I denote one of the D possible different directions and &, is the 
signed area of the projection of  curve C OF the v ,  @ plane. 

As a consequence of gauge invariance, there are infinitely many choices of U which 
correspond to these Wilson loops. All these choices are physically equivalent. In two 
dimensions, we could set 

&(j) = 1 Vz( j )  = exp(iBj1) 

where ju is the uth component of the vector j and we have introduced the short-hand 
notation 

U&) = u ( j 3  j + n,) (11) 

where nu is the unit vector in the v direction. 

dimensions, one obtains 
This construction can be generalized to the D-dimensional case. For example, in four 

U , ( i )  = 1 

W j )  = exp(iB31 j~ + B32.h) 

M j )  = exp(i&jd 
(12) 

U4(j) = exp(iB4tj1 + h z j z  + B43j3). 

Our main task will be the study of the associated Gaussian model, where the Hamiltonian 
is given by 

The solution of this associated Gaussian model is a crucial step in the computation of 
the properties of the high-temperature expansion. 

3. The high-temperature expansion 

In the case of the Gaussian model, the free-energy density can be written as 

B F ( B )  = W(C)(BC(D))~"='/L(C) (14) 
C 
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where the sum is performed over all the closed lattice circuits with given starting point: 
L(C)  is the length of the circuit [6].  

In a model (like the present one) where gauge-invariant quantities are translationally 
invariant 171, we can choose the origin (and the end) of the circuit at an arbitrary lattice 
point. In other cases, like spin glasses, we must average over all the possible starting 
points [SI. 

The previous formula can also be written as 

where we denote the average over all the circuits of length n by ( W ( C ) ) ,  and the number 
of (rooted) closed circuits by N(n). 

Differentiating the previous formulae, we obtain a similar result for the internal energy 
density: 

2BC(D)U(B) = C(Bc(D))”N(n)(w(c))n. 
n 

Here the factor l / n  has  disappeared. 

3.1. The ferromagnetic case 

This is the simplest case. We have only to compute N(n) si :W(C)).  = 1. 
It is evident that N(n) = 0 for odd n. The first non-zero contributions for small n are 

M(2) = 2 0  N(4) = 6 0 ( 2 D  - I). (17) 

We could also compute N(n) using the representation 

If we use the correct normalization of c(D) that gives the critical temperature at 1, we 
immediately find that when D --f 00 all these contributions vanish. This is a well known 
fact: in the high-temperature phase in the mean-field approximation, the internal energy of 
a ferromagnetic system is zero. The fluctuations contribute only in the subdominant terms 
of the large D expansion. 

This behaviour implies that one should be careful in taking the limit D -+ M. Indeed, 
i t  is easy to check that in the limit where n >> D one finds that 191 

c(D)“N(n) a n?IZ (19) 

but, in the opposite limit D >> n, one gets 

N ( n )  - ( n  - I)!!(zD)”” (20) 

and, therefore, 

(n - l)!! 
(2D)”/2 ’ 

c(D)”N/(n) - 
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Equation (20) is very simple to understand. In a closed circuit, for each step in one 
direction, there must be a step in the opposite direction. In infinite dimensions, all the steps 
are taken in different directions (in a way compatible with this constraint). The generic 
circuit will be thus identified by the directions in which these steps are performed (we have 
to make a choice n 12 times between these directions) and by the locations of the steps at 
which two opposite directions are chosen. In high dimensions, all the steps are performed 
in different directions and in this way one obtains the previous formula, i.e. the number 
of pairing of n objects ( ( n  - I)!!) multiplied by the number of choices for the directions 
((ZDY/*). 

If we were unaware of the correct normalization factor and we had put c ( D )  = (A)'/* 
with the aim of obtaining a non-trivial perturbative expansion, we would get the formula 

B U ( B )  = C ( 2 n  - 1)!!(8)2". 
n 

We would have found, in this way, that the high-temperature expansion has a zero radius 
of convergence. This is not a surprise [ 101 because in this scale the critical temperature is 
at ,9 = 0 and any non-zero value of ,9 is already in the low-temperature regime. 

In the ferromagnetic case, the singularity of the free energy disappears when D --f CO 

in the high-temperature expansion with the correct C(D). This effect can easily be 
explained. The ferromagnetic transition is characterized by the building up of a singularicy 
at momentum k = 0 in the two-point correlation function. The free energy in the high- 
temperature phase is given by 

where the integral is performed over the first Brillouin zone. 
When D --f 00, the region of momenta near the origin has a vanishing weight and its 

contribution to the singularity disappears. We can see a transition in the specific heat in  
the limit of infinite dimensions only if the directions of the most relevant modes are not 
orthogonal to the boundary of the Brillouin zone, where the measure is concentrated in 
momentum space. 

3.2. Spin glasses 

In this case, we will compute the spectrum of the random Laplacian. This can be done in 
the infinite-dimensional limit since we recover the old problem of computing the spectrum 
of a random matrix, which is given by a semicircular law?. Instead of directly using this 
result, we prefer to follow a diagrammatic approach. 

In this case, the U ' s  have zero average and are random elements of the U(1) group. 
After the average over all the possible starting points, W ( C )  gets contributions only from 
those circuits for which for any step going from i to k there is a step going from k to i. In 
other words, we must sum only over backtracking circuits. 

Let us count the number of these circuits in infinite dimensions. We must compute 

Gk = lim (ZD)-"N(Zn)(W)a.  (24) D-CU 

One could also use the replica approach 
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It is easy to check that, for n = 1, we do not get any new contributions with respect to 
the previous case and G I  = 1. 

For larger values of n, a more detailed computation must be performed. To this end it 
is convenient to denote one of the different 2 0  possible directions in which a step could 
be performed by a ,  b ,  c ,  . . . . 

In the case n = 2, we have 3!! circuits which differ for the ordering possibilities: 

aabb abba abab (25) 

where it is implicit that the second identical letter denotes a back step in the opposite 
direction of the first identical letter. We do not attach any meaning to the letters a or 6: we 
could have written aabb or bbaa indifferently. In both cases, the second and fourth steps 
are in the opposite direction of the first and third step, respectively. (We neglect subleading 
terms for large D.) 

Each of the 3!! choices correspond to (20)’ lattice circuits. The first two are 
backtracking circuits; the second is not. We, thus, find Gz = 2. 

In the case n = 3, we have 5 ! !  circuits which differs for the ordering possibilities. We 
list here all the backtracking ones: 

aabbcc abbcca abccba aabccb abccab. (26) 

Therefore, G3 = 5. It is easy to verify that a circuit is backtracking if and only if 
the corresponding word may be reduced to the null word by subsequent elimination of 
consecutive identical letters. 

The computation of G, can, thus, be cast under the following graphical form. For each 
given word, we put its 2n letters (two by two equal), on a circle starting from a given point, 
in the same order as the letters of the corresponding word. We connect those points which 
have identical letters by a line and we count the number of intersections of the lines. This 
number is topologically invariant and does not depend on the point where the letter has 
been put on the circle, only on its order. 

We can associate the number of intersections to each word. Let us call Z.(m) the number 
of words which have m intersections (in < n(n - 1)/2). It is easy to check that 

Z,,(O) = G,. (27) 

Indeed, only in the case in which the resulting diagram is planar may the diagram he reduced 
to zero by consecutively removing equal letters. 

The combinatorial problem of computing f,(O) has been solved [ l  I] in the past?. After 
a short computation, one finds 

(28) 

The result of the computation can also be written in a slightly different form. We 
consider a Hilbert space and a base (Im) on this Hilbert space, where m ranges in the 
interval [O-m]). We define two shift operators R and 1: on this space 

Rlm)  = [m + 1) Llm) = Im - 1) (29) 

t The result is B by-product of the formula relating the generating functionals of the connected and disconnected 
functions. 
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where I - 1) is identified with the null vector. 
These two operators satisfy the relation 

CR= I (30) 

which is a particular case (for q = 0) of the q-deformed commutation relations1 

C R - q R C =  1 .  (30 

It is easy to see that 

G, = (OI(R + C:)2”10) (32) 

where the state IO) could also be characterized by the condition 

ClO) = 0. (33) 

The existence of these two other formulations shouId not be a surprise. The condition 
of zero intersection implies that the diagram is planar and the theory of random matrices 
may be reformulated in terms of planar diagrams. The theory of random matrices can also 
be formulated in terms of the orthogonal polynomials with respect to a given measure [ 141 
and in this context it is well known that the shift operators play a crucial role 11%. 

We finally find that 

There is a transition at B = f, which is characterized by a singularity of the specific 
heat of the form (pc - p)-’12.  In other words, the critical exponent 01 is equal to I. 

Equation (34) gives the result for spin glasses in the Gaussian approximation. Starting 
from equation (34), one can obtain the more familiar results for the k ing  spin glass or for 
the spherical spin glass. 

3.3. Josephson junctions in a magneticfield 

In this case, we need first to compute the function 

G,(B) = lim (ZD)-”N(Zn)(W),. (35) 
D-bCO 

We will follow the strategy of first dividing the circuits into classes corresponding to different 
words of 2n letters (as in the previous case) and evaluate the contribution of each class. 

Let us start by computing G*(B)  (it is trivial that G I ( B )  = I). The backtracking 
circuits which correspond to the planar diagrams (the corresponding words are aabb and 
abba) give a contribution of 1 each, More generally, we can define the area of a circuit as 
the minimal area of a surface of lattice plaquettes which have that circuit as a boundary. 
Backtracking circuits can be characterized as area-zero circuits. 

t In the case y = 1, we have bosonic commutation relations, for y = - I  we have fermiunic commutation relations 
md fur y = exp(ie) we have anionic commutation relations. Some applications of the anionic commutation 
relations can be found in [IZ. 131 md references therein. 



D-dimensional arrays 7563 

For large D the word abab corresponds to (20)’ circuits with area 1. For half of these, 
the signed area (defined in equation (10)) S(C) is equal to 1, for the other half S(C) is equal 
to -1. If we recall that W ( C )  = exp(iQ(C)). the contribution of these circuits average to 
cos(B). We finally find 

where 

q = cos(B). (37) 

Generally speaking, each different word of length 2n is associated to (20)“ circuits 
having the same area. The signed area of these circuits having the same area ( A )  is 
different. In a large number of dimensions (in the generic case where all the independent 
steps are performed in different directions), the,projected signed areas SP,” take only the 
values 0 or kl and 

If we average over all the possible orientations of the lattice, the contribution coming 
from circuits having the same word, we find that the average value of (W(C) )  depends only 
on A and is given by 

We finally find that 

where the sum is taken over all words of 2n letters and A ( u )  is the area associated with 
each of these words. 

We now show that the area of the circuit is exactly equal to the number of intersections 
of the lines connecting equal letters in the corresponding diagram. We can decrease the 
area by unity by interchanging two letters. For example 

A(acdefbacdefb) = A(acdefabcdefb)+ 1.  (41) 

Indeed, the area of the projection on the a-b plane goes from 1 to 0 and the projected area 
on the other planes is the same in the two circuits corresponding to the two words. The same 
braiding operation decreases the number of intersections by I. By subsequent operations 
of the previous kind, we can arrive at the zero-intersections case (planar diagrams) by 
decreasing both the area and the projection by unity each time. We have already remarked 
on the relation between the number of planar diagrams and the coefficient of the high- 
temperature expansion for spin glasses (G, = G,(O)). 

We have, thus, transformed the problem of computing the high-temperature expansion 
into a combinatorial problem, which although not very easy, generalizes the computation 
of planar diagrams. The solution of this problem will be presented in the next section. 
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4. The q-deformed harmonic oscillator plays a role 

We have reduced the problem of evaluating the high-temperature expansion for the Gaussian 
model in the presence of a magnetic field to the computation of the number of words of 
2n letters, two by two equal, such that the number of intersections in the corresponding 
diagram is equal to a given number. 

We claim that 

where 

X = Rq + L q  (43) 

and the operators L and R satisfy the commutation relations of a q-deformed harmonic 
oscillator 

(44) 
Therefore, Lq may be identified with the destruction operator and Rq with the creation 
operator for a q-deformed harmonic oscillator. For q = I ,  we recover the ferromagnetic 
case, for q = -1 the fully-frustrated case and for q = 0 the spin-glass case. 

LqRq - qR& = 1. 

These operators may be represented as 

where 

[mlq = (1 - qmf’)/(l - 4) (46) 

and m ranges in the interval [O-CO]. In the limit q + 1, we obtain the usual bosonic 
oscillator and recover the usual formulae. 

It is a simple matter of computation to verify that equation (4.2) gives 

Gi(B)  = I Gi(B)  = 2 + q  GB(B) = 5 + 6q + 3q2 + q3 
(47) 

G ~ ( B )  = 14 + 28q + 28q2 + 2.043 + 1oq4 + 4qs + 46,  

These results coincide with the output of an explicit enumeration of the diagrams. 
We have not been able to find a neat proof of equation (42). However, we have checked 

its validity in many special cases (large q. small q. q = I ,  q = 0 and q = -1) and we are 
convinced of its validity. 

Intuitively, equation (4.2) tells us that when we use the Wick theorem for q-deformed 
harmonic oscillators, we must bring together the different terms we contract, and for each 
term we obtain a factor q to the power of the number of objects we have to cross. 

If we use this result, we finally find the quite simple formula 

which gives a remarkable connection between the high-temperature behaviour of the 
Gaussian model and the q-deformed harmonic oscillator. 

In this way, we have reduced the combinatorial problem of computing the high- 
temperature expansion to an algebraic problem. 
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5. Near the critical transition 

The problem now is reduced to the computation of the spectrum of the operator X of the q- 
deformed harmonic oscillator. The computation is apparently non-trivial. We are, however, 
interested in the computation of the bpectral density near the largest eigenvalues. 

A simple case is q = 1, where the operator X, is not bounded and the high-temperature 
expansion is divergent. In this case, X has a continuum spectrum and the highest eigenvalues 
of X are concentrated in the large m region. Let us assume that this feature is valid for q 
inside the interval [-I, 11. One finds that 

when the operator is applied to a state Im) in the region of large m. (L and R are the two 
shift operators for q =.O which are used in the planar case.) 

The difference among Lq and ( 1  - q)-'/'L can be seen only when the two operators 
act on a low-m state. It is reasonable to assume that the spectral radii and densities near 
the maximum eigenvalues are the same in the two cases. We have verified numerically that 
this conjecture is consistent (at least for q not too close to 1) by estimating the spectral 
density of X, in subspaces of various size (m e M ,  with M up to 300). 

We find, therefore, that the critical temperature is given by 

(50) 

which is the inverse of the spectral value of X ,  i.e. 

The behaviour of the spectral density near the edge is the same as for the random matrix 
model, i.e. in spin glass. In this way, we find the same critical exponents as in spin glasses 
in the Gaussian approximation. 

A possible physical interpretation is the following. In computing the internal energy, 
one has to sum over all the closed circuits. Circuits with large physical area average to 
zero and only fattened backtracking circuits survive. The situation is very similar to spin 
glasses, where only backtracking circuits contribute, the only effect being a renormalization 
of the temperature?. 

6. The issue of exchanging limits 

A very serious problem in assessing the relevance of these results is related to the exchange 
of the limits D -+ CO and ,3 -+ p.. If we exchange the limits, we become blind to any 
singularity whose strength vanishes in the limit D -+ CO. Sometimes this exchange is quite 
justified; sometimes it leads to disaster [16,17]. 

The cases q = 1 and q = - 1 are particularly instructive. The case q = 1 has already 
been discussed. The case q = -1  is quite interesting. We notice the following facts. 

t The previous results imply thal when n and m both approach infinity at fixed ratio, one finds I.(m) = 
f n ( 0 ) w f ( m / n ) .  It i s  quite possible that this simple result has a direct proof, 
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(i) The spectrum of the lattice Laplacian for the fully-frustrated model is well known 
[17]. A simple way to compute it  consists of using the relation between the Gaussian fully- 
frustrated model and the naive Wilson fermions on the lattice [IS]. Indeed, let us start from 
the Hamiltonian of the naive Wilson fermions 

H = ( c ( p ( T ( i  + F.) - T ( i  - G ) ) ~ , , $ ( Q )  + T ( f ) $ ( i ) )  (52) 
# 

I P  

where F. is the versor in the p direction, y,, are the appropriate Dirac gamma matrices 
in D dimensions (which satisfies the usual algebra) and @ are the spinors on which these 
matrices act. For even D ,  the gamma matrices may be taken to have dimension 2 O / 2 .  In 
order to simplify the notation, we have not indicated the spinorial indices. If we introduce 
the field 

it is a well known fact that the lattice Dirac operator reduces to the Laplacian of a fully- 
frustrated model. * 

(ii) The previous remark implies that for q = - 1, one has in the Gaussian approximation 
(with the appropriate rescaling of 8 )  

1 +flu(@) = /” dDk 
1 

(1 - Zg2 sin2(ku)/D 
(54) 1 v=I .D  

for all even values of the dimensions. 
(iii) If we send D to infinity, we find that 

1 
I + pU(8) = - 1 - 8 2  (55) 

in perfect agreement with the direct computation. (In this case, the creation and annihilation 
operators act on a two-dimensional fermionic space.) 

(iv) In any finite dimensions [17], the closest singularity to the origin of the function 
V ( 8 )  is located at 8’ = i, which corresponds to the integration point where all the momenta 
are at the boundary of the Brillouin zone (i.e. (k,,) = h / 2 ) .  

(v) In infinite dimensions, the function 8 ( q )  is discontinuous at q = -1. Indeed, 

lim &q) = # ~ Z ( - I )  = I .  (56) 
y-L-1 

(vi) As already found in [17], at q = -I, the limir D + 03 of pc is smaller by a 
factor of two than the value of pc obtained from the high-temperature expansion computed 
directly at D = 03. However, this difficulty seems to be confined to q = -1. If we first 
take the limit D + 03 at q # 1, we recover the correct critical point for the q = 1 case, 

In other words, if we first compute the critical temperature at D = 03 for q # - I ,  
we obtain the correct value of the critical temperature at q = -1, while we would get the 
wrong results if we performed the limit D --f 03 directly at q = -1. By consistency, we 
find that the prefactor in front of the nearest discontinuity vanishes when q -+ - 1, so that, 
for q = -I, this singularity disappears. 

It seems that we are free to conjecture that (apart from two well understood problems 
at q = -I [I71 and q = 1 [IO]) the correct value of the critical temperature is obtained 
when we send D to infinity first. A numerical verification of the validity of this conjecture 
may be attempted for q = 0 or hi, where pc can be computed by diagonalizing matrices 
of size zD or P, respectively. 
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7. 'Open problems 

Let us suppose that the difficulties discussed in the previous section are not serious. We 
still face the problem of presenting a full computation of the high-temperature expansion 
in the X Y  model. We must include high-order terms which come from the fact that the 
distribution of the spins is not Gaussian. In the case of spin glasses, these corrections are 
relevant: however, they are identical in the Ising, XY and spherical model. In this last case, 
they can be computed by tuning the coefficient of the quadratic term in such way that the 
spherical constraint is satisfied. 

We have not checked whether this also happens in our case, but it seems plausible. If 
this argument is correct. knowledge of the Gaussian propagator is sufficient to reconstruct 
the high-temperature expansion. 

What happens in a finite number of dimensions is not clear. The first step is to verify 
whether the equality of the two-model survives in perturbation theory. Also if this check 
is satisfied, one should be very careful because of non-perturbative effects. It seems to 
me rather likely that for rational B the critical theory should behave differently from spin 
glasses and the only hope for having a spin-glass-like behaviour is for generic irrational E ;  
however, I do not have solid arguments in this direction. It would be very interesting to 
connect this approach with the results obtained in two dimensions, where quantum groups 
have been used to compute the spectrum [19]. 

The possibility of having spin-glass behaviour for this non-random system [ZO] is 
fascinating and deserves more careful investigation. 
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Appendix 

In this short appendix, I report on some numerical findings that I have obtained on the 
behaviour of the spectral radius of X as function of 0 for q = exp(i2ns). In this case, I 
find a function which is discontinuous at all rational points, but the discontinuity vanishes 
when the rational point becomes irrational. 

If we apply the previous formulae, we find that the spectral radius of X 2  should be 

The argument breaks down for rational 0. Indeed, if 0 = rfs,  with both r and s integer 
(r  and s are the smallest integer which have this property), X reduces to a finite-dimensional 
operator of size s. In this case, the previous formula is not correct. However, in the limit 
where s goes to infinity, it seems to become correct again. This can be seen by considering 
the function R(0) ,  defined as 

(1 - f )  + R ( 0 ) .  
4 

sin (n0) IX I (@)~  = .2 
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The function R(8)  is the difference between the analytic continuation of the value of 
the spectral radius from [ql < 1 and the actual spectral radius (apart from the presence of 
a multiplicative factor which goes to zero as s-’ when s + CO at fixed 0). 

I have computed the function R(8)  for all rational with s < 21 (70 cases) and have 
found that it goes rapidly to zero with s (quite likely as s-’). It seems likely that the 
function R(8) is discontinuous at rational points, but the value of the discontinuity goes to 
zero when the rational becomes irrational (i.e. when s -F 00). 

Unfortunately, I am not aware of a physically interesting model in which the properties 
of X for complex q enter. This appendix should be considered as a curiosity. 
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